Discovery of Osmium(III) and Osmium(IV) Binuclear Nonahalide Complexes: the Synthesis, Voltammetry, and Spectro-electrochemistry of $(Bu_4N)_3[Os^{III}_2Br_9]$ and $(Bu_4N)[Os^{IV}_2Br_9]$, and their Relationship to the Corresponding Di-osmium Decahalides

Graham A. Heath* and David G. Humphrey

The Research School of Chemistry, The Australian National University, G.P.O. Box 4, Canberra, 2601, Australia

Redox-related $[Os^{|v_2}Br_9]^-$ and $[Os^{||l_2}Br_9]^{3-}$ have been isolated and characterised for the first time, initially as tetra(n-butyl)ammonium salts, and compared with face-sharing $[Ru_2Br_9]^{z-}$ (z = 1, 2, 3) and edge-sharing $[Os_2X_{10}]^{z-}$ (X = Br, CI; z = 2, 3, 4), by voltammetry and by spectroscopic studies which include the electrogenerated mixed-valence complexes, $[Os_2Br_9]^{2-}$ and $[Os_2Br_{10}]^{3-}$.

The triply halide-bridged structures $[M_2X_9]^{3-}$ and $[M_2X_9]^{-}$ are evidently well favoured and widely distributed among trivalent and tetravalent transition metals.^{1,2} For osmium however, only doubly bridged $[Os_2Cl_{10}]^{2-}$ and $[Os_2Br_{10}]^{2-}$ (structure **a**) are known.^{3—5} Di-osmium nonahalides (structure **b**) have not been isolated previously, despite efforts to identify them,⁶ and despite the accessibility of neighbouring $[Re_2X_9]^{-,7}$ [Ir₂X₉]^{3-,8} and $[Ru_2X_9]^{3-,9,10}$ However, there is reportedly powder X-ray diffraction evidence for Cs₃[Os₂Br₉] as an unstable component among the aerial decomposition products of solid Cs₃[OsBr₆]·H₂O.⁶

Cotton et al. prepared crystals of $(Bu_4N)_2[Os_2Br_{10}]$ by heating (Bu₄N)₂[OsBr₆] to only 40 °C in trifluoroacetic acid (TFA).⁵ We find the halide-abstraction reaction reliably proceeds further under reflux to yield dark blue $(Bu_4N)[Os_2Br_9]$ as the exclusive product. Accordingly, $(Bu_4N)_2[Os_2Br_{10}]$ is best obtained by restricting both temperature and reaction time, and, once isolated, may be efficiently converted to (Bu₄N)[Os₂Br₉] by the TFA procedure (Scheme 1; steps i and ii). The two binuclear Os^{IV} compounds, though similar in appearance, are clearly distinguished by appropriate analytical and physical measurements. Both have been prepared pure in good yield during these studies (as have the corresponding Ph₄P⁺ salts). While (Bu₄N)[Os₂Br₉] is a strong oxidant and considerably more reactive than the decabromide, it may be dissolved without decomposition in dry CH₂Cl₂ at 220 K. Addition of successive mole equivalents of

Figure 1. Voltammetry of $(Bu_4N)[Os_2Br_9]$ at 215 K. The corresponding $[Ru_2Br_9]^{z/z-1}$ couples are indicated by dashed vertical lines. CV = cyclic voltammetry ($\nu = 100 \text{ mV s}^{-1}$), acV = alternating current voltammetry ($\nu = 20 \text{ mV s}^{-1}$; $\omega = 200 \text{ Hz}$), conditions as in Table 2.

 Bu_4NBH_4 causes rapid stepwise reduction, culminating in quantitative separation of $(Bu_4N)_3[Os_2Br_9]$ as air-sensitive blue-black needles. The solid-state far-IR data for these systems (Table 1) are fully in accord with their assigned structures and oxidation states.

The low-temperature voltammetric data (Table 2) show that all these binuclear polyhalide complexes are capable of successive reversible one-electron transfers spanning four or

Scheme 1. All processes in CH_2Cl_2 except i and ii. Boxed complexes are short-lived.

Table 1. Far-IR data.

	Metal-halogen absorptions /cm ^{-1a,b}		
Complex	$\nu(M-Br_{terminal})$	v(M-Br _{bridging})	
$(Bu_4N)_2[Os^{1V}_2Br_{10}]$	235, 222, 198°	$170vw^4$	
$(Bu_4N)[Os^{IV}_2Br_9]$	ca. 230brd	183m	
$(Bu_4N)_3[Os^{111}_2Br_9]$	223, 203	181m	
$(Bu_4N)_3[Ru^{111}_2Br_9]$	258, 231e	178m	

^a Solids dispersed in polythene discs, and studied by FT IR. ^b m = medium, vw = very weak, all others are strong; br = broad. ^c This third band is absent in $[Os^{1V}_{2}Br_{9}]^{-}$ spectra. ^d Unresolved at 290 K but (Ph₄P) $[Os^{1V}_{2}Br_{9}]$ has v 235, 220 cm⁻¹. ^e Scaling v(Ru) by $[\mu_{RuBr}/\mu_{OsBr}]^{1/2}$ gives v(Os) = 230, 205 cm⁻¹.

Table 2. Voltammetric data.

	$E_{1/2}$ /V for $M_2^{z,z}/M_2^{z,z\pm 1}$ couples at 215 K ^{a,b}			
Complex	v,ıv←ıv,ıv	ıv,ıv←→ıv,ııı	IV,III ↔ III,III	III,III→III,II
$(Bu_4N)_3[Ru_2Br_9]$		+1.46	+0.95	-0.52
$(Bu_4N)[Os_2Br_9]^c$		+1.07	+0.35	-1.27
$(Bu_4N)_2[Os_2Br_{10}]$	+1.86	+0.30	-0.18	-1.88
$(Ph_4P)_2[Os_2Cl_{10}]$	+2.1 ^d	+0.26	-0.24	-1.85
in situe [Os ₂ Cl ₉] ³⁻		+0.90	+0.20	-1.46

^a In CH₂Cl₂/0.5 M (Bu₄N)BF₄ at a Pt working electrode vs. Ag/AgCl ref.; $cf. E_{1/2} = +0.55$ V for [Fe(C₅H₅)₂]^{+/0}. ^b Couples fully reversible (\leftrightarrow), or partially reversible (\rightarrow), as indicated, under prevailing conditions. ^c (Bu₄N)₃[Os₂Br₉] has identical voltammetry. ^d This wave measured in MeCN. ^e See text.

Figure 2. Electronic absorption spectra, recorded in an OTTLE cell at 215 K (see text). (a) $[Os_2Br_{10}]^{z-}$ spectra: (i) $Os_2^{III,III}$; (ii) $Os_2^{IV,III}$; (iii) $Os_2^{IV,III}$; (i) $(b) [M_2Br_9]^{z-}$ spectra: (i) $Os_2^{III,III}$; (ii) $Os_2^{IV,III}$; (iii) $Os_2^{IV,III}$ (iii) $Os_2^{IV,III}$; (iii) $Os_2^{IV,III}$; (iii) $Os_2^{IV,III}$

five oxidation levels, as first demonstrated for $[Ru_2Br_9]^{z-.11,12}$ Figure 1 compares the response of $[Os_2Br_9]^{z-}$ which is shifted cathodically, as expected,¹³ and has a noticeably larger separation between successive IV/III couples. The most reduced species, $[Os_2Br_9]^{4-}$, is very reactive even at 215 K. Apparently the electrochemistry of $[Os_2Cl_{10}]^{2-}$ and $[Os_2Br_{10}]^{2-}$ has not been considered previously. In accord with their greater overall ligation, the decahalides prove systematically easier to oxidize and harder to reduce than their nonahalide counterparts (by ≥ 0.5 V at every stage). Consequently the $Os_2^{1V,IV \rightarrow V,IV}$ couple is accessible in solution, even though electrogenerated $[Os_2X_{10}]^{-}$ is shortlived under the prevailing conditions. It is noteworthy that neutral $[Os_2Cl_{10}]$ is also known, in the crystalline state, and confirmed to have structure (**a**).¹⁴

The first two voltammetric reductions of $[Os_2Br_{10}]^{2-}$ are fully reversible in CH₂Cl₂ at 215 K. Accordingly, the new species $[Os_2Br_{10}]^{3-}$ and $[Os_2Br_{10}]^{4-}$ were electrogenerated and their electronic spectra recorded in a cryostatted optically transparent thin-layer electrode (OTTLE) cell (Figure 2a). However the third reduction is coupled with rapid expulsion of Br⁻ by $[Os_2Br_{10}]^{5-}$, forming $[Os_2Br_9]^{4-}$ which is readily detected on the voltammetric return scan. Above 240 K, the di-osmium(III) complex $[Os_2Br_{10}]^{4-}$ gives way quantitatively to $[Os_2Br_9]^{3-}$ in a parallel reaction, as in Scheme 1. Moreover, the corresponding electroreduction of $(Bu_4N)_2[Os_2Cl_{10}]$ appears to lead directly to the hitherto unknown $[Os_2Cl_9]^{3-}$, provisionally identified in solution by its voltammetry and optical spectrum (v_{max} 28670 and 32090 cm⁻¹).

Electronic spectra for the $[Os_2^{III,III}]$, $[Os_2^{IV,III}]$, and $[Os_2^{IV,IV}]$ states of structures (**a**) and (**b**) are contrasted in Figure 2. The UV-VIS region is dominated in each case by an intense manifold of halide-to-metal charge-transfer transitions whose centre of gravity moves to lower energy on stepwise oxidation of the metal centres (and on replacement of Os by Ru in **b**). Resemblance with the corresponding $[Ru_2Br_9]^{z-}$ envelope^{11,15} is most evident at the (IV,IV) level, where metal-metal interaction is expected to be lessened by d-orbital contraction (Figure 2b). For $(Bu_4N)[Os_2Br_9]$, $\mu_{eff}(295 \text{ K})$ is 1.51 μ_B per Os atom, according to preliminary variable-temperature measurements.¹⁶

Several weaker features are seen in the 10000 to 3000 cm^{-1} region for these complexes but, in particular, mixed-valence $[Os_2Br_9]^{2-}$ is characterised by a well resolved broad band at 4700 cm^{-1} (ϵ 780 dm³ mol⁻¹ cm⁻¹) which is more distinct than any corresponding feature of $[Os_2Br_{10}]^{3-}$. Detailed studies are in progress on the crystal structures, spectra, and magnetic properties of the newly discovered di-osmium nonahalides in successive oxidation states.

We thank Dr. B. J. Kennedy for permission to quote optical data for $[Ru_2Br_9]^{z-}$ in advance of publication, Dr. K. S. Murray (Monash University) for magnetochemical collabora-

tion, and the Federal Government for a Commonwealth Post-Graduate Research Award to D. G. H.

Received, 17th January 1980; Com. 0/00270D

References

- 1 R. H. Summerville and R. Hoffmann, J. Am. Chem. Soc., 1978, 101, 3821.
- 2 F. A. Cotton and D. A. Ucko, Inorg. Chim. Acta, 1972, 6, 161.
- 3 B. Krebs, G. Henkel, and M. Dartmann, Z. Naturforsch., Teil B, 1984, 39, 843.
- 4 M. Bruns and W. Preetz, Z. Anorg. Allg. Chem., 1986, 537, 88.
- 5 F. A. Cotton, S. A. Duraj, C. C. Hinckley, M. Matusz, and W. J. Roth, *Inorg. Chem.*, 1984, **23**, 3080.
- 6 K. Emerson and J. E. Fergusson, Proc. Mont. Acad. Sci., 1983, 42, 101.
- 7 F. Bonati and F. A. Cotton, Inorg. Chem., 1967, 6, 1353.

- 8 H.-J. Steinebach and W. Preetz, Z. Anorg. Allg. Chem., 1985, 530, 155.
- 9 J. E. Fergusson and A. M. Greenaway, Aust. J. Chem., 1978, 31, 497.
- 10 J. Darriet, Rev. Chim. Miner., 1981, 18, 27.
- 11 V. T. Coombe, G. A. Heath, and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1983, 2307.
- 12 D. Appleby, R. I. Crisp, P. B. Hitchcock, C. L. Hussey, T. A. Ryan, J. R. Sanders, K. R. Seddon, J. E. Turp, and J. L. Zora, J. Chem. Soc., Chem. Commun., 1986, 483.
- 13 G. A. Heath, K. H. Moock, D. W. A. Sharp, and L. J. Yellowlees, J. Chem. Soc., Chem. Commun., 1985, 1503.
- 14 R. C. Burns and T. A. O'Donnell, Inorg. Chem., 1979, 18, 3081.
- 15 G. A. Heath and B. J. Kennedy, Proc. of XXVII Int. Conference on Coord. Chem., July, 1989, p. W42. [Ru₂Br₉]²⁻ (Ru₂^{1V/III}) has an essentially localized electronic structure, with a characteristic intervalence charge-transfer band located at 10 000 cm⁻¹, whereas [Ru₂Br₉]⁴⁻ (Ru₂^{III,II}) is electronically delocalized with absorption bands near 14 750, 10 250, and 5300 cm⁻¹.
- 16 K. S. Murray, unpublished observations.